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The high dimensional model representation (HDMR) technique is a procedure for representing high dimensional
functions efficiently. A practical form of the technique, random samptihigh dimensional model
representation (RSHDMR), is based on randomly sampling the overall function. In reality, the samples are
often obtained according to some probability density functions (pdfs). This paper extends our previous RS
HDMR work with uniformly distributed random samples to those with a nonuniform distribution and treats
uniform sampling as a special case. Weighted orthonormal polynomial expansions are introduced to approximate
the RS-HDMR component functions. Different pdfs give special formulas for the weighted orthonormal
polynomials. However, the structure of the formulas for the-RIBMR component functions represented

by the Monte Carlo integration approximation are the same for all pdfs. The correlation method to reduce the
variance of the Monte Carlo integration and the method to represent the high order terms by lower order
terms in uniform RSHDMR can also be used for nonuniform REDMR. The theoretical basis of nonuniform
RS—-HDMR is provided, and an application is presented to an integrated environmental exposure and dose
model for trichloroethylene.

1. Introduction 2. Methodology

High dimensional model representation (HDMR) is a general
set of quantitative model assessment and analysis tools for,
capturing high dimensional inpubutput system behavidr$
Different forms of HDMR have been introduced. A practical
form of the technique, random samplingigh dimensional
model representation (R$DMR), is based on randomly n
sampling the overall function. In our previous wdrk, the _
random data are sampled over a uniform distribution; i.e., the 1) =fo+ ) fikQ) + Z 05 %) +

2.1. RS-HDMR. Because the impact of the multiple input
variables on the output can be independent and cooperative,
HDMR expresses the model outd(t) as a finite hierarchical
correlated function expansion in terms of the input variables:

= 1=i<|=

probability density function (pdf) of the input variables is unity. " ' f e 4o
However, in practice, the data are often nonuniformly distributed _ Z ) iliz---h(xil' % ""Xil)

. . . . . 1<ip<++<ij=n
(for instance, a normal distribution, etc.). The formulation of
RS—HDMR for a uniform distribution cannot be directly applied T 1o (X0 X000 %) 1)
to data with a nonuniform distribution. In this paper, we extend
our previous uniform RSHDMR work to nonuniform distribu- wherex = (X, X,..., Xn), the zeroth order (i.el,= 0) component

tions. After introducing weighted orthonormal polynomials functionfyis a constant representing the mean responfe)f
related to the pdf, the general formulas of R$DMR can be and the first order (i.el, = 1) component functioi(x;) gives
constructed, including uniform RSHDMR as a special case.  the independent contribution f¢x) by theith input variable
The formulation of the Monte Carlo integration approximation acting alone, the second order (iles 2) component function
for the RS-HDMR component functions is the same for all  f;(x, ) gives the pair-correlated contributionf(@) by the input
pdfs. The correlation method to reduce the variance of the Monte variablesx; andy;, etc. The last termyz_n(X1, Xo,..., Xn) contains
Carlo integratior?, and the method to represent the high order any residualnth order correlated contribution of all input
terms by lower order terms in uniform R$IDMR,1° can be variables.

also applied within nonuniform RSHDMR.

The paper is organized as follows. Section 2 provides the
theoretical basis of nonuniform R&EHDMR. Section 3 presents
an illustration of the method to an integrated environmental
exposure and dose model for trichloroethylene. Finally, section
4 contains conclusions.

Distinct, but formally equivalent, HDMR expansions, all of
which have the same structure as eq 1, may be constructed.
When data are considered as randomly sampled; HBVIR
can be obtained. For RSHDMR, we first rescale the variables
X by some suitable transformations such that & < 1 for all
i. The output functiorf(x) is then defined in the unit hypercube

* Author to whom correspondence should be addressed. E-mail: hrabitz@ K" = { (X1, X2,....X)|0 = X = 1,i = 1, 2,...,n}. The independent
princeton.edu. input variablex; (i = 1, 2, ...,n) has the pdfw(x) satisfying
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the conditions

{vvi(xi)zo (for0=<x < 1)

L) dg=1 (=1,2,..0) )

The component functions of RFDMR with the input
variables having the pd#k;i(x) are defined as follows:

o= fio[ JW0Q)T0) ax ®)

fi(x) = ﬁ(n,ﬂwk(xk)f(x) dx' —f, (4)
k=i

(%, %) = fKn,zﬂwk(xk)f(x) X! = f,06) = f06) =, (5)

k=i,j

where & and i are just the productxddx,++-dx, without dx;
and ddx;, respectively. Finally, the last termfi, (X1, Xo, ...,
Xn), iIs determined from the difference betwei¢x) and all the
other component functions in eq 1.

The RS-HDMR component functionsfi(x), fij(x, X),...
possess the property

SO (% % %) D=0 (S {iy, ipenri}) (6)

which defines the mutualbeightedorthogonality between two
RS—HDMR component functions:

n
'[;(n 8 vvi(xi)filiz,,,il(xily Xizl---!xil)fjljz,,,jk(le! ijv'"lle) dX = 0 (7)
i i i} Z {0 dosendid)
The component functiongx;), fij(x, X),... may be provided
numerically, at discrete values of the input varialigsx,...

produced from sampling the output functiffr) for employment
on the right-hand side of eqs-5. Thus, numerical data tables

can be constructed for these component functions. A critical
feature of the HDMR expansion is that its component functions

are optimal choices tailored to a givéRr) over the entire desired
domain ofx.2 Experience shows that the high order terms in

the expansion often are negligible, and only the first few low

Wang et al.
2,...,n),12 the random variable
1 N
Fu= N2 o ®)
N&
has the expectation
n
FnC= o[ JWOOF00 dx (9)
=
the variance
_1
va{Fy} = Nvar{ F(x)} (10)
and the standard deviation (standard error)
ofFy} = VafF )2 = =o{F()}  (11)
§ § VN

Therefore,Fy can be used as an estimate of the integial
ML, wi(x)F(x) dx with a standard erros{ Fn} proportional to
the standard erroo{F(x)} of the integrand random variable
F(x).

For fo, fi(x:), andfj(x, X)), N sets ofx®, (x, x)© = (x(f),
x(zs),..., xi(i)l, X, xfi)l x,(f)) with distinct fixed values ok and
06, % X109 = (49, 59 50, 5, X0y X%y, 2, ;... )
with distinct fixed values of¥, x) are generated, according to

the pdfs Iy Wi(X?), Mg WOKT), NG MRz jentj W),
respectively, and then

1o (6]
foe =Y f(x®
0 NFZ( )

1o NG 1o S
) & (06 )% = 15 104

(12)
(13)

1N ) 1N .
i (%, X) ~ sz((&, x, X)) — sz((&, x')®)

1g INC) 1g C)
_ - -\ - 9
Nglf((x,,x) )+ NFZf(X ) (14)

order terms are needed to give a satisfactory approximation of These formulas were obtained in our previous work for uniform

f(x). Thus, the approximate value f{k) for an arbitrary point

RS-HDMR.”"1° The pdfswi(x) (i = 1, 2,...,n) are already

x can be determined from these tables by performing only low involved in the sampling(x®), f((x, x)®), andf((x, x, x1)®)

dimensional interpolation ovei(x;), fi(Xi, X),...
2.1.1. Direct Monte Carlo Integration Approximatioii.o
construct the numerical data tables for the-REODMR com-

and do not explicitly appear in the previously described Monte
Carlo integration formulas. Other high order component func-
tions can be determined similarly.

ponent functions, one needs to evaluate the previously mentioned 2.1.2. Weighted Orthonormal Polynomial Expansion Ap-
integrals. Evaluation of the high dimensional integrals in the proximation.For uniform RS-HDMR (i.e., allwi(x) = 1), to

RS—-HDMR expansion may be performed by Monte Carlo

random sampling integratidA;2hence, the name RSHDMR.
The theoretical foundation of Monte Carlo integration is the

following.!! Suppose = (X1, Xz,..., X) are independent random

variables with pdfwi(x)(i = 1, 2,...,n) andF(x) is a function

of x. For N points ofx(® = (x(f), x(zs),..., xff)) (s=1, 2,...,N)

randomly generated iK", according to the pdivi(x) (i = 1,

reduce the sampling effort, the REBIDMR component func-
tions may be approximated by expansions, in terms of a suitable
set of basis functions (for instance, orthonormal polynomials,
spline functions, or simple polynomialé)¥hen the point$x}

are not uniformly distributed, the RSHDMR component
functions can be approximated by weighted orthonormal
polynomials{ ¢} as
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k

fi(x) ~ Za‘r @1%) (15)

I
fi (%, %) ~ pzlq;ﬁgq Pp)Py%) (16)

m m m'

i 06 X, %) ~ e X)) r%)  (17)
ik Xir % pZ‘qZ‘r: Ypar PpX)P\X)@

wherek, I, I, m, m', andm’ are integersq,, A5, andy}; are
constant coefficients to be determined, and the polynorfiglis

possess the weighted orthonormality properties

SowE) dx=0  (forallr,i)  (18)
Sowle P dx =1 (forallr,i)  (19)
Sowe e =0 (p=0) (20)

i.e., they have a zero mean and a unit norm and are mutually

orthogonal, with respect to the weight(x). In most cases, to
achieve satisfactory accuracy using onﬂi(xi), the terms
@5 (%), ¥5(x), andgi(x) are often sufficient (i.ek, I, I', m, n,
m' < 3). Utilizing the conditions in eqs 1820, the approxima-
tions for the RS HDMR component functions given by eqgs
15—-17 will preserve the mutual weighted orthogonality in eq
7. In the following material, some examples{gf} are provided.
2.1.2.1. Uniform DistributionFor the uniform distribution,
wi(x) = 1, and

7a(x) = V32— 1) (21)
#lx) = 6V —x + o (22)
PR =2V 5 K o) (@3)

2.1.2.2. Triangular Distributionkor the triangular distribution

Zxi (for0 = x < w)
wi(x) ={* S
m(l—xi)(om % =1)
shown in Figure 1, we have
i 2(1+p)
)=/ —3x — (1 + 25
®1(%) 148 [Bx — (1 +w)] (25)

@3x) = a[—10(1— u + uO + 2(4 — u — u® + 4u)x
— (14 2u — 3u* + 2u® + u*)] (26)
P5(x) = BCX + ¢ + Cy% + ¢) (27)

where
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probability density

0 1
® x

Figure 1. Triangular distribution.

a:

3
\/(1 —u+ )1 = 3u+ 8u® — 11° + 8u’ — 3u® + )

(28)
8=\ ot 29)
P(u) =1 — 3u+ 8u® — 1% + 8u* — 3u° + 18 (30)
q(u) = 3 — 18u + 90u? — 285%.° + 593 — 86Qu°
+ 957u° — 86Qu” + 593 — 285, + 9u™°
_ 18“11+ 3/412 (31)
Co=—2(1+ 3u — 14u® + 30> — 184" — 184°
+ 30u® — 14u” + 3u® + 1) (32)
C, = 10(3— 3u — 2u? + 29u° — 48u* + 295 — 2u°
—3u’ + 3ud) (33)
G, = —10(9— 21u + 444% — 261° — 26u" + 44u°
—21u°+ 9u’) (34)
C;=70(1— 3u + 84® — 11> + 8u* — 3u° + u¥  (35)

Using the formulas in egs 15L7, eq 1 can be expressed as

n k o
() ~ +ZZai i) + 2 ZZﬂEq PR P(x)
1=1r= <I<|=np=1g=

m m m

+ iikr (s \erl (x. f 4o 36
1si<Jz<ksanqulr: Ypar P00 P506)@r (%) (36)

The coefficients can be determined using the weighted orthonor-
mality properties of ¢} as follows:

o = WO 00)¢h0x) dx
= ﬂn!]wk(xof(x)wl<xi) dx

N
ﬁ;f(x@)coim@) 37)
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_ the integrand:11 Consider an integral for any coefficient in eqs
0= o S WOMWO0 06 X)@p00)Ph(x) s 3739, for example. J Y q

= ()b (% [ . i
Jie[ ] 50007 (x) ) € = [ r0a09106) (41)
N
A 1Zf(x(s))(p‘ k() (38) The variance of the integrand}_, wi(xJf(X)¢!(x) in K" can
N& P K be reduced if one can find a reference functigr) satisfying

two conditions: (1)f(x) — h(x) is almost constant or zero in

Vo= L/;LLW(K)W(&)Wk(Xk)ka(K X, X)PH(X%) @l X the entire domain, and (2) the integral
( ) r( dxi d d n ; ;
n 708 B S om0y = (@2
- fK"DWl(Xi)f(X)q);)(Xi)gog(xj)wr(Xk) o is known analytically. Then
1M . . n
~ Nglf(x@)co'p(xi‘s))qojq(x,-S’)(/)El(x,is’) 39 o=/ n!]wk(xk)[f(x) — h(X)]¢| () dx +
j;n!jlwk(xk)mx)ca‘m dx

The formulas in eqs 3739 are the same as those for uniform

RS-HDMR,” because the sampling is drawn from the guidance n . .

by the weightswi(x)} . = j;nﬂwk(xk)[f(x) —h()lg;(%) dx + ¢ (43)
When the Monte Carlo integration approximation is used, =

for a given set oN samples, the weighted orthogonality of the

Now, the variance comes only from the first term in eq 43.
elements of ¢} no longer holds; for example,

Becausd(x) — h(x) is almost constant or zero everywhere, we
expect that

_ _ N _
S )@@k (%) o ~ Nzw;,(rﬁbco;(yf’) =0 (40) " |
= var [ TG00 ~ e () <

All the coefficientsa,, ), y',f,‘;r,... in eq 36 then are coupled n .
with each other and we may determine them simultaneously var{ ﬂwk(xk)f(x)¢L(>g)} (44)
by solving a system of linear algebraic equations. However, =
for a high dimensiom, the number of linear algebraic equations .
can be very large, and solving the equations is not computa-a may be approximated by Monte Carlo integration,
tionally efficient810 LN

2.2. Correlation Method To Improve the Accuracy of i O NCNAINC) i
Monte Carlo Integration in RS —HDMR. The error of Monte %~ Z[f(x )~ RO 7) + ¢ (45)
Carlo integration can be reduced either by increasing the sample
sizeN or decreasing the variance Bfx) in K". Monte Carlo for data sampled according ta(xs) with better accuracy than
integration error becomes troublesome when the random datathat given by eq 37. Similarly, we also have
of the integrand-(x) have a large variance (i.é=(x) has rapid LN
changes in the desired domain, especially in sign). This behavior 9 N1 i (N (S i
is expected to arise when considering the integrands in the ﬁéq”ﬁz[f(x( ) = hxXN g NeyX?) + ey (46)
determination opr , yg‘;r, and other higher order coefficients
in eqs 3739 with products of the functionfp} such ad(x)

FLP08) and T)@ )@ )¢x). The difficulty arises Voer Z[f(x(s’) — h(x] g} r(x) + el
because the integrals exhibit rapid changes and the functions (47)
{ ¢} are fixed, regardless of the form f§k). The determination

of the expansion coefficients of high order REDMR where

component functions by Monte Carlo integration generally
requires additional samples. For example, to deterrajnky

IJ —
eq 37, a few hundred samples may give good accuracy; however, ﬂ(nﬂwk(xk)h(x)gop()g)wq(&) dx (48)
for ,ng in eq 38, to achieve the same accuracy, thousands of
samples may be needed, and . in eq 39, even more
samples may be needed. However, the sample size is often ik — h 4
restricted by the computational effort. These problems may be Coar L/;”ﬂwk(xk) (x)¢p(>q)g0q(>g)(p (%) o (49)

addressed by recognizing that the accuracy of Monte Carlo

integration may be improved by reducing the variance of the and formulas for other high order expansion coefficients.

integrand. A truncated RS HDMR expansion of eq 36 satisfies the two
To improve the accuracy of Monte Carlo integration, the previously stated conditions and can be usedh@g. For

correlation method may be employed to reduce the variance ofexample, we may choose the third order expansion,
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n k [
h(x) = + ZZai Prlx) + 2 Zzﬁgqm)wzm)
1=1r= =1<]=np=1lg=

m m m

_ijk
R AP R R
1<i<)<k=np=1g=1r=

where the coefficient§a,, B, ;7;1)‘;,} are determined by direct
Monte Carlo integration, given in eqs 339. The difference
f(x) — h(x) should be small if the truncated REIDMR

expansion is a good approximationftf). Moreover, the second

condition holds, using the weighted orthonormality property of

{o}:

)L PKX)  (50)

fKnljwmh(x)cpi(m dx = /‘Kanlm)[fo

+ .iid @r0%) + K;ﬂzzggq #L00TX)

m oo
ik

+ 7 P00 PLX) P @r(x,) dx
1si<]z<ksnpz|qz\r: parTe a XJ
=0, (51)
We then have
U 1s ® O], 11 (9 [
P =Y [f(x®) — h(x)] g (%) + & 52
a, NFZ[ (™) = h(x?)] g, (x”) + @, (52)
Similarly, we also have
o 1N . . .
bq NZ[f x9) - h(X(S))]fp',)Oﬁ(S’)cDg()g‘s)) + B (53)
} N . . i}
Vo NZ”(X(S)) — ()] @i(xY) + 7,
. (54)

Equations 5254 show that the first terms in these equations
are corrections for the initial values,, B}, and 7h. The
resultantoy, fp, andy:[',';r values may be reused as new initial
values for the construction of a nel(x) with even smaller
values off(x) — h(x) to repeat the calculation again, and more-
accurate results may be obtained. Then, egs®ERbecome an
iteration procedure for a given set of random samples. The
iteration should be convergent if the initialx) value is similar

to thef(x) value and the sample si2¢is large enough.

J. Phys. Chem. A, Vol. 107, No. 23, 2008711

ijk

= fKnDwlm)h<x)cpg(mcog<yﬁ)cpr<xk) dx

Coar
n n k o
= Aanl(xl)[fo +Zzla: )
I
+ lezqzlﬂéq PPN P PL6)r(x) dx
=0 (56)
and yg‘;, will be obtained without iteration as

i} 1N . _

o™ | 2 10 ~ M7 ) 7)erx) (57)

The correlation method achieves improved accuracy through
the enhanced quality of the Monte Carlo integration. Thus, for
a particular choice of basigp}, reference functiom(x), and
sample sizeN, the convergence of the iteration is expected to
be good.

2.3. High Order Terms of RS—HDMR Expansion Ap-
proximated by Lower Order Ones. Whenn is large, eq 36
has a large number of terms, i.e., a large number of coefficients
to be determined by approximate Monte Carlo integration. Each
coefficient has its own Monte Carlo integration error, and the
total error will be large when the number of terms is large. Even
though the correlation method may be employed to improve
the accuracy of the Monte Carlo integration, it is often inaccurate
to determine high (greater than third) order RIDMR
component functions by weighted orthonormal polynomial
approximations. To further improve the accuracy, especially for
high dimensional systems, an approach called low order term
product-RS—HDMR (Ip—RS—HDMR) has been developed for
uniform RS-HDMR,1° which can readily be extended to
nonuniform RS-HDMR.

Define a set of new functions fdr= 1, 2,...,nandp = 0,
1,...,1:

Oii,..i, (G Xip o ) =

p (I=p)2

gfis(xis) rl:l fip—1+2rip+2r(xip—1+2r' Xip+2r)
p
[0
=

(I-p)/2
0 (if any| |fis(xis)|| and/orl||f;

)i

| |fip—1+2r ip+2r(Xip—1+2r, Xip+2r
r=

)II=0)
(58)

X

p-1+2rlptar (X' p-1+2r” pror

wherefi(xi) andfi, ;. io 2 (X, 120 Xipi2) @re the first- and second-
order RS-HDMR component functions, represented by weighted

If one chooses the second order expansion as a referenceythonormal polynomial expansions whose expansion coeffi-

function,

[
Zs n;qz\ﬁgq %(Xi)qt?g(xj)

n k
h(x) = f, +ZZ@4 @r(x) +
1=1r= 1=<i<
(55)

then

cients are accurately determined by the correlation method, and

1/2

15,0011 = | fow (x)F(x ) dx

s

k 1/2
in2
(o)

r=

(ef{l,2...n) (59
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1 where{ o} are constant coefficients, which can be obtained using
/s b[(')Wipimr(xipimr)vvipm(&pm) the weighted orthonormality property 66}, i.e.,

| |fip*1+2rip+2r(xip,l+2r7 Xipﬂr)l | =

112 n
i7r+zrip+2r(xip71+2r' Xip+2r) dxip*1+2r dxip+2r ailizmil B ‘/|‘(n|: Wi(Xi)f(X)giliz.“il(Xil’ Xiz,m,Xi‘) o
(Y 1/2 LN
B Zz(ﬁirféwim)z (60) %_Zf(X(S))gi i 060 %, %)
SE NF 12 1 2 |
We call (for1 =0, 1,...,n) (70)
_ fit)
gi(x) = m (61) Becausd g} is not a complete set, the expansion ofhaveriate
e function f(x) in this basis is likely only an approximation.
fi (%, %) Considering that
g%, %) = = (62)
TR o= 1%l (71)
normalized first and second R&IDMR component functions. o; = [IK)I (fori =1, 2,...,n) (72)
For completeness, we set o
o = ||fij(xiv XJ)“ (forl<i<j=n) (73)
f
9= “f—OH (63) eq 70 becomes
0

n
Considering that the functiors;,. ;, (%, Xi.--.,X;) are a separable fx) ~f,+ S fx) + Z 04, %)+«
product, and using the property of REDMR component func- = 1<f5<n :

tions given by eq 6, it can be readily proved tbat. i (X, Xi---, A (% % :
x,) (I =0, 1,...,n) are orthonormal with the weights present, + l<i1<."<i|<na'1'2'“llg'1'2""I(X'1’ Xlz""’xu) +
i.e., h -
+ 0y 1G10. n(Xp Xoree0 %) (74)
n
ﬁ‘",_ W), i (%0 X 0o %) O =0 mf:;}cf;anyhes the following approximations, upon comparison

(5 g hh) (64 fo O X X) X0 G (X % e X)  (75)
fKn Wi(xi)gizliz...il(xilv X X)) OX =1 (65) (forl=3,4,...n)

If only the normalized first order RSHDMR component

n functions are used, we have
.fK“ | Wi(xi)giliz---il(xil’ Xiz""’xi|)gj1j2...jk(le’ ij""'le) dx =0 n
(U P R (S P ) (66)  TOXHFDROT H oy006%) + -
i= <i<J=n
The only restriction is that any two functions {ig} cannot Y 00 (6 X X)
have the same set of variables. For instancigjifcontains the Lsig=+=<ii=n
function + 0 G2 n(Xy %o, %) (76)
£ 06T, %) where
(XX, X) = 67
9% 5250 = L o105, %91 67) )
it cannot also have iy, Xi e ) = ggi5= ngis(Xis)H (77)
fiC6)f 0%
9% % %) = e (68) (forl =2, 3,...0)

OGO NI
] _ _ Notice that allgi,i,..i,(Xi, Xip..., %) (I = 2 or 3) are products of
and vice versa, because the two functions are not weightedpormalized first and second order REDMR component

orthogonal functions. _ functions. Hence, eqs 74 and 76 only require computation of
The set of functiongg} may be used as a basis to expand the first and second order R&IDMR component functions,
f(x): which can be accurately represented by weighted orthonormal

polynomial expansions, with the help of the correlation method.
The high order component functions are no longer explicitly
computed. The coefficientt,i, i, for Gii,.ii Xy, Xip--er Xij) IS

determined by eq 70, whose Monte Carlo integration ap-

n

f(X) ~ a0y + ) oygi(x) + z (%, %) + ==
<j=<n

1= 1<

+ z i Gy (K X ) e proximation still involves the product of one and two variable
L= functions. At first sight, the sampling effort and achieved
+ 0z 112, (X0 Xoree0 %) (69) accuracy might appear similar to tiey, 5, ygl;r,"-} set for
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the weighted orthonormal polynomigp} expansions given by Qv Qv

eqgs 3739. However, thei(x) andfj(x, x) are obtained by Tc

averaging(x) overK"1 andK"2, with respect to alk, except Q Cinh exh Q,

X andx, x, respectively. This basis reflects the behavior of A—c"‘-bl ¥ Lungs | |———c->-

f(x). In contrast{ ¢} is a fixed set of functions, without specific v a N

knowledge of the particulam-variate functionf(x) of interest; Q, - rp

therefore, the variance of_,Wi(XJf(X)[Tig(x) should be ‘ Crp-v I Rapidly Perfused |

larger than that forﬂEzlwk(xk)f(x)giﬂzmi,(xil, Xigreees X)) There-

fore,{g} is a natural basis fdi(x), and better accuracy should :%se——l Slowly Perfused |<2§9——-

be attained, compared {@}, using the Monte Carlo integration sp-v

approximation with a given sample size. Moreover, compared Qfat Qgat

to the{ ¢} expansion given by eq 36, tig} expansions given "EHTV—| Fat }"—

by egs 74 and 76 have many fewer terms and, consequently, - ingestion a

less unknown coefficients to be determined by Monte Carlo ‘ci"_l \ Liver J<—'!L--

integration. For instance, the third order component functions Cliv-v T etaboliem

fix(Xi, %, X) have 27 terms in eq 36 if the third order weighted Qg - Qid

orthonormal polynomial approximation is used. In contrast, eqs "c——" Kidney J"'—"

74 and 76 have only one terng(x, X, XJ). Thereductionin Kid-v T renal excretion

the number of terms to calculate with tHg} expansion Q Qg v

increases exponentially with the ordeof RS—-HDMR com- <&| j Skin I«iﬂ——
. L Ceou:

ponent functions. The reduction in the number of Monte Carlo skin-v

integrations with the basigg} should also reduce the compu- i

tational error. Crmedia

Similarly, the correlation method can be used to reduce the
variance of|'|Ezlwk(xk)f(x)giliz,_,il(xil, Xipe-ey X)) IN the determi-
nation ofa,j,. j,, where the truncated expansions in eqs 74 and
76 are used as reference functidi{s).

Figure 2. Schematic diagram of a general basic physiologically based
pharmacokinetic (PBPK) model for volatile organic compou¥ids.

stream with the “pseudo-steady-state” assumption, the source
strength of volatile TCE emissions from a shower is derived as
3. Application to an Integrated Exposure and Dose Model

3.1. Model Description. An integrated exposure and dose (79)

s=kfc. -2
model has been developed to study multiroute residential human
exposures to trichloroethylene (TCE) that is present in tap water. whereSis the source strength (mass/timi€), the volatilization

It incorporates dynamic microenvironmental and pharmacoki- coefficient (which depends on the mass-transfer coefficient and
netic models, which consider the release of TCE from water shower flow rate),Ci, the concentration in watery the

into air within different rooms in the home, the activities of concentration in air, an#l the Henry’'s Law constant.
individuals, and the physiological uptake processes for three The calculated microenvironmental air concentratitime
exposure routes (ingestion, inhalation, and dermal absorption).profiles of the pollutant are then used as inputs to pharmaco-

Microenvironmental modelif§is used to quantify the levels  kinetic models. Pharmacokinetic models are mathematical
of concentrations in different media (air, water, etc.) that are constructs that are used to calculate the concentrations or
coming in contact with human receptors. Microenvironments amounts of chemicals in body tissue and fluids as a function of
have typically been defined as individual or aggregate locations time 1317 Physiologically based (“mechanistic”) pharmacokinetic
where a homogeneous concentration of the pollutant is encoun-PBPK) models typically represent the biological organism as
tered, such as bedrooms and bathrooms in a residence. The dailg set of physiological compartments by lumping together similar
exposure for an individual is the sum of the exposures in all tissues, and by describing transport between compartments on
microenvironments encountered within a day. the basis of actual processes, such as blood circulation. The

The governing mass-balance equation for a microenviron- basic structure of a typical PBPK model describing the transport
mental compartment is formulated as follows: and metabolism of a volatile organic compound, such as TCE,
in the body is shown schematically in Figure 2. There are
potentially three major natural routes by which the chemical
enters the body: (a) inhalation, (b) ingestion, and (c) dermal
absorption.

The primary means of transport for xenobiotic chemicals that
enter the body through one of more of these routes is via blood,
which is the main vehicle for nutrient supply and waste removal
from tissues. Xenobiotic chemicals in blood generally partition
rate from compartmerjtto compartment (in units of n¥/min), into free and protein-bound fractions, and the free fraction drives
i andj are compartment numbers, ands the total number of the transport of the chemical into tissue for the usual case of
compartments. The term “sources” represents the contaminantpassive transport. In the basic PBPK model, transport of
generation mechanisms present in the compartment, whereaghemicals between blood and tissue is assumed to be flow-
“sinks” represents the contaminant removal mechanisms thatlimited, which implies that the transport barriers between the
are present in the compartment. free molecules in blood and tissue are negligible, and equilibra-

The source strength for TCE through volatilization during tion between free and bound fractions in blood and tissue is
showers is determined by the mass-transfer rate between waterapid. The chemical concentrations in venous blood exiting a
and air!4~16 On the basis of a plug flow model of the water tissue (tissue concentrations are assumed to be at equilibrium)

\/ia = ;qj’icj - ;thci + Zsources— Zsmks (78)

whereC; is the TCE concentration in air at compartmerin
units ofug/m®), V; is the volume of the compartmeingin cubic
meters)t is the time (in minutes)y; is the volumetric air flow
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TABLE 1: Input Variable Ranges and Parameter p
range
lower upper

input bound bound u
age,x; (yr) 15 80
TCE concentration in tap watet; (ppm) 0.001 05
bathroom volumex (md) 9 15
drinking-water consumption ratg, (L/day) 0.8 2.4
shower flow ratexs (L/min) 7.7 38.3 18.3
shower timexs (min) 5 30 10
time after shower in bathroors; (min) 5 30 10

and in the tissue are assumed to be homogeneous, with respect o5 |\ I\ N Y0000
to the concentration of the chemical. These assumptions enable : :
tissue concentrations of the chemical to be described by ordinary °2

differential equations (ODEs), similar to that of a continuously
stirred tank reactor.

A mass balance around the equilibrium lung compartment
results in

Qcardia(,cvenous+ Qalveolapair(inhaled)
Qcardiac+ Qalveola/ Pblood/air

Carterial =

(80)
where

1 n
CVenous: ZQJ Cj (81)
Qcardiad:

CarterialiS the arterial blood concentration, anidnousiS the venous
blood concentration.Cairinnaled) represents the inhaled air
concentrationQcardgiaciS the cardiac blood flow rat&a,eoiaris
the alveolar blood flow ratéRpi00d/airis the partition coefficient
between air and blood); is the blood flow rate in compartment
j, andC; is the concentration in compartment

The mass balance for any compartmieot volumeV; in the
PBPK model, other than the viable skin and stratum corneum
compartments, is given by

dc C
Qj Carterial % R]

Vit
whereV; is the volume in compartmetPjpi00qiS the partition
coefficient between compartmeptand blood, andR; is the
metabolism reaction rate in compartmgnt

3.2. Nonuniform RS—-HDMR Application. The nonuniform
RS—-HDMR methodology is used to construct the truncated
RS—-HDMR expansion as an efficient fully equivalent opera-
tional model (FEOM) for the previously described integrated

(82)
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Figure 3. Total body burden predicted by the trichloroethylene (TCE)
microenvironmental/PBPK model for one month of residential exposure.
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Figure 4. Data distribution with respect to the uniform distributed
variablex; (normalized).
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exposure model, to relieve the computational burden of complex Figure 5. Data distribution with respect to the triangular distributed

mechanistic modeling. The operations of the FEOM are very
fast, because they only involve algebraic manipulations. The

variablexs (normalized).

accuracy of the FEOM depends on the order of the truncated are mainly due to showering activities. The reason for choosing

RS—HDMR expansion and the number of sampling points for
constructing it, which is explored in the following.

Seven input variables are selected from the integrated
exposure and dose model for TCE to construct the FEOM
through the RSHDMR with the nonuniform distribution

the total body burden of TCE after one month of exposure as
the target model outpuf(&)) for mapping with the seven inputs

is that this amount reaches steady-state and it can be used to
assess the health risk (see the output of the integrated exposure
and dose model simulation in Figure 3 for a hypothetical case

method. The ranges of variation of these seven input variablesstudy).

are shown in Table 1.

The first four input variablesxs, X, X3, and xs,—have a
uniform distribution. The last three input variabtes;, xs, and
x7—have a triangular distribution. The target model output is
the total body burden of TCE accumulated after one month of
continuous exposure via inhalation, ingestion, and dermal

Ten thousand random samplesxofand their corresponding
values off(x), were obtained from the model, according to the
pdfwi(x). Figures 4 and 5 give examples of the data distribution,
with respect to two different distributed input variablesand
xs. Notice thatx; is a discrete variable. The uniform and
triangular distributions can be observed to have a distinct

contact. The exposure pathways of inhalation and dermal contactinfluence, and most data have values(@) < 0.5.
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The correlation method with basge} and{g} was used to TABLE 2: Relative Errors of the Different-Order
construct the RSHDMR component functions for different ~RS—HDMR Expansions with the Basis{¢} (Truncated eq
sample sizes (500, 1000, 3000, 5000, and 10 000). The accurac n%é)rg{%ﬂe\,‘v‘itﬁygﬂfer%?]?g'g‘ggﬂd'f"grtggf r?&?”é’ﬁées%?ﬁﬁ .
of different order RSHDMR expansions whose component  sijzesN (Threshold = 0.3)
functions were obtained frofp} and{g} with different sample data portion (%8)
sizes was then tested by comparison to the 10 000 exact data.

The accuracy was represented by the portion of 10 000 data relative error (%) first order second order third order

with relative errors not larger than 5%, 10%, and 20%. k,I,1"=3;N=10 000

3.3. Correlation Method with Basis{ ¢} . First, the weighted 13 gg'i gi-g gi'é
orthc_)normal polynomialf ¢} were used as a paS|s to ap- 20 733 97.9 971
proximate the RSHDMR component functions given by eqs K1 1" = 2: N = 3000
15-17. The correlation method (eqs 524, 57) was used to 5 465 828 86.3
determine the coefficientga,, ﬁgq, yg‘;r}. Different h(x) and 10 57.5 94.0 95.3
sample sizes were used to determine the coefficients. \h(x¢n 20 73.6 97.8 97.8
is the second order RSHDMR expansion (eq 55), with the k1,I'=2;N=5000
third order weighted orthonormal polynomial approximations 5 46.5 83.1 87.9
(i.e., k, I, I' = 3), the iteration of the determination of first to 10 57.3 94.1 95.9
third order RS-HDMR component functions was convergent 20 73.5 97.7 97.8
only for the sample siz&l = 10 000. Wherh(x) is the second k I,1"=2;N=10 000
order RS-HDMR expansion with the second order weighted 5 46.2 83.9 90.7
orthonormal polynomial approximations (i.&,l, I' = 2), the %8 %i gg'g gg'i

determination of first to third order RSHDMR component _
functions was convergent only for the sample sizes 3000, 5000, *° The percentage of 10 000 data whose values-&@& and relative

and 10 000. For both choices lofx), the iteration-determining errors are not larger than a given value, and those whose values and
higher (grez;lter than third) order Rl$1DMR component func- absolute calculated values of REDMR approximation both are0.3.

tions were divergent for all the previously discussed sample

sizes. . . )
i . sion was used to approximdtéq). Otherwise, the second order
The accuracy of the resultant convergent first to third order weighted orthonormal polynomial expansion was used. The
RS-HDMR expansions are unsatisfactory for a special reason. jierative determination of the coefficients,,.;, for all order

For the third order RSHDMR expansion, Onlyv60% data terms was convergent fdd = 500. 1000. 3000. 5000. and
have relative errors that are not larger than 5%. Observing 10 ogg. Compared to the results given by the bdsgik, the

Figures 4 and 5, one can see t_hat many_of the data have VeNYaccuracy arising frorfig} composed of normalizef{x) is worse
small values of(x). For these points, even if the absolute errors 5, N > '3000: however, this basis can be usedNor 3000,
of the RS-HDMR approximation are quite small, their relative whereas ¢} cannot be used in this case.

errors can be very large. In this case, relative error does not
give useful information. We set a threshold of 0.3 mgf{a).
When the value of a datum is not larger than the threshold and
the absolute value calculated by the-REDMR approximation

is not larger than the threshold, we define the-REDMR
approximation as giving the correct answer. The threshold dose
value of 0.3 mg is chosen because the corresponding TCE
concentration in water is less than the threshold concentration
level used in the animal studies in the literature. Therefore, we
added the portion of the data satisfying this condition to the by the second order weighted orthonormal polynomial expan-
data whose values are larger than the threshold and have relativgjo Al g " (x “x. . x) (I = 3) are the products of the
errors of 5%, 10%, and 20% as a representation of the accuracynormalizedlfiz(';(;) function gi‘ven in eq 77. The results are given
The results are given in Table 2, .Wh'c.h shpws that the'RS iy Table 3. The high (greater than third) order terms are
HDMR approximation with the basigp} is quite satisfactory. negligible; therefore, only the first to third order approximations

For the third order RSHDMR expansion~90% of the data 5o nresented. Compared to Table 2, the results in Table 3 are
have relative errors that are not larger than 5% or both their quite satisfactory.

values and absolute calculated values given by-RBMR
approximation are not larger than the threshold.

3.4. Correlation Method with Basis{g} . When the weighted
orthonormal polynomial§p} were used as a basis, the iterative In the present paper, the uniform random samptihiggh
determination of the RSHDMR component functions was  dimensional model representation (RBDMR) technique is
divergent for sample sizes 500 and 1000. This is because theextended to nonuniform distributions. After giving definitions
second order functiofy(x;, x) cannot be accurately determined of the RS-HDMR component functions and introducing
for small sample sizes with the badig}. The first order weighted orthonormal polynomials related to the probability
functionfi(x) can be accurately determined for a few hundred density function (pdf) of the input variables, all the formulas
samples with the basisp}; therefore, we can use normalized of the Monte Carlo integration approximation for uniformRS
fi(x), i.e., gi(%), as a basis to construct high order terms for HDMR can be used for nonuniform R$HDMR. The pdfw-
small sample sizes. Different order truncation of eq 76 was used (x) reflects the random sampling of data and does not explicitly
for the approximation, and the truncated second order expansiorappear in the formulas. The correlation method, to reduce the
of eq 76 was used d€x). When the sample size satisfibd> variance of the Monte Carlo integration, and the low order term

3000, the third order weighted orthonormal polynomial expan-

When the sample size satisfidt> 3000, the second order
RS—HDMR component functions;j(x, %) can be accurately
determined. Therefore, normalized functidifs) andf;(x;, X;)
can be used to compose the bgsi and truncation of eq 74
can be used for an approximation. Aftgx;) andf;(x, X) were
accurately determined by the correlation method (see Table 2),
the coefficientsw,;, i, (I = 3) in eq 74 were determined by the
correlation method, witth(x) being the second order RS
HDMR expansion whose component functions are approximated

4. Conclusions
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TABLE 3: Relative Errors of the Different-Order complex mechanistic models. The RBEDMR methodology

RS—HDMR Expansions with the Basis{g} (Truncated eq provides an efficient route to treat this problem.
74) Obtained by the Correlation Method of Monte Carlo

Integration with Second-Order h(x) and Different Sample
SizesN (Threshold = 0.3) Acknowledgment. The authors acknowledge support from

— the Petroleum Research Fund of the American Chemical Society
data portion (%) and the U.S. Environmental Protection Agency, under Coopera-
relative error (%) first order second order third order tive Agreement No. EPAR-827033 to Environmental and

N = 3000 Occupation Health Sciences Institute.
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